HW 6 (Uploaded on Apr. 19, 2017)

Name:

Observation Number	Hydrocarbon Level x(%)	Purity y(%)	Observation Number	Hydrocarbon Level x(%)	Purity y(%)
1	0.99	90.01	11	1.19	93.54
2	1.02	89.05	12	1.15	92.52
3	1.15	91.43	13	0.98	90.56
4	1.29	93.74	14	1.01	89.54
5	1.46	96.73	15	1.11	89.85
6	1.36	94.45	16	1.20	90.39
7	0.87	87.59	17	1.26	93.25
8	1.23	91.77	18	1.32	93.41
9	1.55	99.42	19	1.43	94.98
10	1.40	93.65	20	0.95	87.33

HW 6.1. To investigate the relationship between hydrocarbon and oxygen purity, the following data are collected.

The purity is the response Y, and hydrocarbon level is the regression x. A simple linear regression model is assumed as

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$. Use R to run the following codes (for performing linear regression analysis).

Hydro=c(0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.4, 1.19, 1.15, 0.98, 1.01, 1.11, 1.2, 1.26, 1.32, 1.43, 0.95) Purity=c(90.01, 89.05, 91.43, 93.74, 96.73, 94.45, 87.59, 91.77, 99.42, 93.65, 93.54, 92.52, 90.56, 89.54, 89.85, 90.39, 93.25, 93.41, 94.98, 87.33) fit=lm(Purity~Hydro) summary(fit)

Then answer the following questions.

- (a) Testing $H_0: \beta_1 = 0$ vs $H_a: \beta_1 \neq 0$. Use significant level $\alpha = 0.05$.
- (b) Find the estimate of σ
- (c) Using the codes to find the 95% confidence and prediction intervals at x = 1%. Which one is larger? Why?

```
predict(fit,data.frame(Hydro=1),level=0.95,interval="confidence")
predict(fit,data.frame(Hydro=1),level=0.95,interval="prediction")
```

Sol. The followings are R outputs:

```
Call:
lm(formula = Purity ~ Hydro)
```

Residuals:

Min 1Q Median 3Q Max -1.83029 -0.73334 0.04497 0.69969 1.96809

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 74.283 1.593 46.62 < 2e-16 *** Hydro 14.947 1.317 11.35 1.23e-09 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.087 on 18 degrees of freedom Multiple R-squared: 0.8774,Adjusted R-squared: 0.8706 F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

- (a) Since we have P-value= 1.23 × 10⁻⁹ < 0.05, we reject the null hypothesis.
 Conclusion: At significant level α = 0.05, data do provide sufficient evidence that the slope β₁ is not zero.
- (b) $\hat{\sigma} = 1.087$. (Residual standard error)
- (c) The followings are R outputs:

When hydrocarbon level x = 1%, we are 95% confident that the mean oxygen purity percentage is between 88.486 and 89.975.

When hydrocarbon level x = 1%, we are 95% confident that the oxygen purity percentage for a single run of the exp will be between 86.830 and 91.632.

HW 6.2. The electric power consumed each month by a chemical plant is thought to be related to the average ambient temperature (x_1) , the number of days in the month (x_2) , the average product purity (x_3) , and the tons of product produced (x_4) .

у	<i>x</i> 1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
240	25	24	91	100
236	31	21	90	95
270	45	24	88	110
274	60	25	87	88
301	65	25	91	94
316	72	26	94	99
300	80	25	87	97
296	84	25	86	96
267	75	24	88	110
276	60	25	91	105
288	50	25	90	100
261	38	23	89	98

TADIE . E12.2	Power C	oneumo	tion Data
IABLE • 1012-2	Poweru	onsump	tion Data

Call:

lm(formula = y ~ x1 + x2 + x3 + x4)

Residuals:

Min	1Q	Median	3Q	Max
-14.098	-9.778	1.767	6.798	13.016

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-123.1312	157.2561	-0.783	0.459	
x1	0.7573	0.2791	2.713	0.030	*
x2	7.5188	4.0101	1.875	0.103	
хЗ	2.4831	1.8094	1.372	0.212	
x4	-0.4811	0.5552	-0.867	0.415	
Signif. code	es: 0 ***	0.001 ** 0.	.01 * 0.0	05 . 0.1	1

Residual standard error: 11.79 on 7 degrees of freedom Multiple R-squared: 0.852, Adjusted R-squared: 0.7675 F-statistic: 10.08 on 4 and 7 DF, p-value: 0.00496 Based on the above R output, answer the following questions.

- (a) Write down the fitted least squares regression model (see Page 151 of the lecture note)
- (b) What is the value of the estimate of σ (residual standard error, see Page 152)
- (c) Find the value of R^2 , and how to interpret it? (see Page 154)
- (d) Test the hypothesis at $\alpha = 0.05$: (see Page 155, do not forget write down the interpretation)

 $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ vs $H_a:$ at least one of them is nonzero.

- (e) Based on the output, test the following hypotheses at $\alpha = 0.05$ (see page 156-159, do not forget write down the interpretation)
 - (1) $H_0: \beta_1 = 0$ vs $H_a: \beta_1 \neq 0$.
 - (2) $H_0: \beta_2 = 0$ vs $H_a: \beta_2 \neq 0.$
 - (3) $H_0: \beta_3 = 0$ vs $H_a: \beta_3 \neq 0$.
 - (4) $H_0: \beta_4 = 0$ vs $H_a: \beta_4 \neq 0.$

Sol.

(a)

$$\hat{Y} = -123.1312 + 0.7573x_1 + 7.5188x_2 + 2.4831x_3 - 0.4811x_4$$

- (b) $\hat{\sigma} = 11.79$. (Residual standard error)
- (c) $R^2 = 0.852$. The coefficient of determination, R^2 , is the proportion of the total variation in the data explained by the linear regression model.
- (d) Since P-value= $0.00496 < 0.05 = \alpha$, we do reject the null hypothesis.

Conclusion: At significant level $\alpha = 0.05$, at least one independent variable x_1, \ldots, x_4 is important in describing the response Y.

(e) (1) Since P-value= $0.030 < 0.05 = \alpha$, we do reject the null hypothesis.

Conclusion: At significant level $\alpha = 0.05$, the data do provide sufficient evidence that average ambient temperature (x_1) does significantly add to a model that include number of days in the month (x_2) , the average product purity (x_3) , and the tons of produced.

- (2) Since P-value= 0.103 > 0.05 = α, we do not reject the null hypothesis. Conclusion: At significant level α = 0.05, the data do not provide sufficient evidence that x₂ does significantly add to a model that include x₁, x₃, and x₄.
- (3) Since P-value= 0.212 > 0.05 = α, we do not reject the null hypothesis. Conclusion: At significant level α = 0.05, the data do not provide sufficient evidence that x₃ does significantly add to a model that include x₁, x₂, and x₄.

(4) Since P-value= $0.415 > 0.05 = \alpha$, we do reject the null hypothesis.

Conclusion: At significant level $\alpha = 0.05$, the data do not provide sufficient evidence that x_4 does significantly add to a model that include x_1, x_2 , and x_3 .